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1Suleyman Demirel University, Faculty of Forestry, Forest Products Engineering
Department, Isparta, Turkey
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Abstract: Determination of quality parameters such as lignin and extractive content of
wood samples by wet chemistry analyses takes a long time. Near infrared (NIR) spec-
troscopy coupled with multivariate calibration offers a fast and nondestructive alternative
to obtain reliable results. However, due to the complexity of the spectra obtained from
NIR, some wavelength selection is generally required to improve the predictive ability
of multivariate calibration methods. Pinus nigra Arnold. Var. pallasiana is the second
most growing pine species in Turkey. Even though its rotation period is very high,
around 120 years, the forest products industry has widely accepted the use of Pinus
nigra because of its ability to grow on a wide range of sites and its suitability to produce
desirable products. In this study, 51 samples of Pinus nigra trees were collected and their
lignin and extractive content were determined with standard reference (TAPPI) methods.
Then, the same samples were scanned with near infrared spectrometer between 1000
and 2500 nm in diffuse reflectance mode. Multivariate calibration models were built
with genetic inverse least squares method for both lignin and extractive content using
the concentration information obtained from wet standard reference method. Overall,
standard error of calibration (SEC) and standard error of prediction (SEP) were ranged
between 0.35% (w/w) and 2.4% (w/w).

Keywords: Extractive, genetic algorithms, lignin, multivariate calibration, near in-
frared spectroscopy, Pinus nigra Arnold. Var. pallasiana
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INTRODUCTION

Wood is a natural composite that contains cellulose, lignin, hemicelluloses, and
extractive components. These components are utilized in different industries
after processing wood with chemical or mechanical methods such as in the
pulping industry. In order to obtain high pulp yield in chemical pulping condi-
tion, wood should have high cellulose, low lignin, and extractive contents.[1,2]

Tree breeding programs employ different silvicultural treatments to improve
tree growth. These trees may have different chemical properties than natural
grown trees. Morever, wood samples obtained from the trees in different loca-
tions shows different properties (chemical compositions, morphology, juvenile
wood, mature wood, etc.).[3] These differences play an important role on fin-
ished products such as brightness of bleached paper and board mechanical
properties. Therefore, it is important to determine these contents. Determina-
tion of chemical content of wood with traditional chemical methods is a costly
and time-consuming process. In recent years, spectroscopic methods are being
used to characterize wood properties. The utilization of spectroscopic methods
is fast and provides more information.

Near infrared (NIR) spectroscopy[4,5] has become a popular method for
simultaneous chemical analysis and is being studied extensively in a num-
ber of different fields such as process monitoring,[6] biotechnology,[7] and the
pharmaceutical industry[8] because of the potential for on-line, nondestructive,
and noninvasive instrumentation. Traditionally, NIR spectroscopy has found
its widest application area in agriculture and the food industry.[9–17] The NIR
portion of the electromagnetic spectrum covers the range from 780 nm to
2500 nm and most of the absorption bands observed in this region are due to
overtones and combinations of the fundamental mid-IR molecular vibrational
bands. Although all the fundamental vibrational modes can have overtones, the
most commonly observed bands arise from the C–H, O–H, and N–H bonds in
the molecules.

NIR spectroscopy is also used for the chemical and mechanical character-
izations of different wood species.[18–23] In the Southern United States, Pinus
taeda is a very important species mainly utilized in pulping and wood using
industry. Therefore, many NIR researches were carried out on this tree. Trans-
mittance NIR spectra was used to determine chemical composition of solid
wood of loblolly pine.[24] Strong correlation was found between wet chemistry
and the NIR spectra determination. In the same research, sample preparation
and quantity were also discussed. It was found that the source of error is mostly
coming from the wet chemistry. NIR spectra along with the multivariate anal-
ysis were used to determine chemical and mechanical properties of loblolly
pine.[25] Samples were selected from different locations and the height of the
tree. The correlation coefficient for lignin and extractives was 0.80. This mea-
surement was carried out between 500 nm and 2400 nm. When the spectrum
was narrowed (650 nm–1150 nm), the correlation coefficient was not changed
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26 B. Uner et al.

a lot. This makes NIR spectroscopy a relevant and quick method to determine
chemical constituents of wood without destruction. Mechanical properties of
loblolly pine were determined with bending strength. MOE and MOR were
calibrated with NIR. Their correlation coefficient was 0.88 and 0.92, respec-
tively. The chemical composition of Pinus taeda was investigated with NIR
spectroscopy.[26] Diffuse reflectance NIR spectroscopy and radial strips from
seven different locations were used. Strips represented the juvenile wood, tran-
sition zone between mature and juvenile wood, and mature wood. Prediction
of error was high. This is reasoned for the different origins of the samples.
The decay resistance of larch wood (Larix decidua Mill. and Larix sibirica
Lebed.) was tested with NIR.[27] Samples were taken from logs that were com-
ing from industry. This means that each log was coming from different sites
and soil conditions. A partial least square regression calibration model based
on the FT-NIR spectra and reference data for standardized wood decay tests
successfully predicted decay resistance of two larch species. NIR spectroscopy
is also utilized to determine Kappa number in the paper industry. Usually a wet
chemical analysis method is performed to obtain this value. It was suggested
that NIR spectroscopy could be used directly in mills.[28]

Advances in computers and automation technology have made today’s
instruments incredibly fast; they can produce hundreds of spectra in a few
minutes for a given sample that contains multiple components. Unfortunately,
univariate calibration methods are not suitable for this type of data, as they
require an interference-free system. Thanks to the chemometrics, multivariate
calibration methods make it possible to relate instrument responses that consist
of several predictor variables to a chemical or physical property of a sample.
Several classical multivariate calibration methods have been developed in the
last couple of decades for the analysis of complex chemical mixtures.[29–32]

The choice of the most suitable calibration method is very important in order
to generate calibration models with high predictive ability for future samples.
In some cases conventional methods may not offer a satisfactory solution to
a given problem due to the complexity of the data and it may be necessary
to apply some sort of variable selection. There have been many mathematical
methods of variable selection.[33–35] Genetic algorithm is one of them, offering
a fast and effective solution for large-scale problems.[36–38]

The inverse least squares (ILS) method is based on the inverse of Beer’s
Law where concentrations of an analyte are modeled as a function of absorbance
measurements. Genetic inverse least squares (GILS) is a modified version of
the original ILS method in which a small set of wavelengths are selected from
a full spectral data matrix and evolved to an optimum solution using a genetic
algorithm (GA) that has been applied to a number of wavelength selection
problems.[39–41] GAs are non-local search and optimization methods that are
based on the principles of natural selection.[42–46]

Pinus nigra Arnold. Var. pallasiana is the second most growing pine species
in Turkey. Even though its rotation period is very high (around 120 years), the
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forest products industry has widely accepted the use of Pinus nigra because
of its ability to grow on a wide range of sites and its suitability to produce
desirable products. Therefore, the objective of this article is to determine lignin
and extractive content with NIR spectroscopy. NIR spectroscopy will help
to determine chemical content quickly and reduce chemical cost. It will also
provide more information to producers.

MATERIALS AND METHODS

Genetic Inverse Least Squares

The inverse least squares (ILS) method, which uses the inverse of Beer’s Law,
models the concentration as a function of absorbance measurements. Because
modern spectroscopic instruments are very stable and provide excellent signal-
to-noise (S/N) ratios, it is believed that the majority of errors lie in the reference
values of the calibration sample, not in the measurement of their spectra. In
fact, in many cases the concentration data of the calibration set is generated
from another analytical technique that already has its inherent errors, which
might be higher than those of the spectrometer (e.g., Kjeldahl protein analysis
used to calibrate NIR spectra).

The ILS model for m calibration samples with n wavelengths for each
spectrum is described by:

C = AP + EC (1)

where C is the m x l matrix of the component concentrations, A is the m x n

matrix of the calibration spectra, P is the n x l matrix of the unknown calibration
coefficients relating l component concentrations to the spectral intensities, and
EC is the m x l matrix of errors in the concentrations not fit by the model.
In the calibration step, ILS minimizes the squared sum of the residuals in the
concentrations. The biggest advantage of ILS is that Eq. (1) can be reduced for
the analysis of a single component at a time because analysis is based on an ILS
model invariant with respect to the number of chemical components included
in the analysis. The reduced model is given as:

c = Ap + ec (2)

where c is the m x l vector of concentrations for the component that is being
analyzed, p is n x l vector of calibration coefficients, and ec is the m x l vector
of concentration residuals not fit by the model. During the calibration step, the
least-squares estimate of p is:

p̂ = (A′A)−1A′ · c (3)
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28 B. Uner et al.

where p̂ are the estimated calibration coefficients. Once p̂ is calculated, the
concentration of the analyte of interest can be predicted with the following
equation:

ĉ = a′ · p̂ (4)

where ĉ is the scalar estimated concentration and a is the spectrum of the
unknown sample. The ability to predict one component at a time without
knowing the concentrations of interfering species has made ILS one of the
most frequently used calibration methods.

The major disadvantage of ILS is that the number of wavelengths in the
calibration spectra should not be more than the number of calibration samples.
This is a big restriction because the number of wavelengths in a spectrum
will generally be much more than the number of calibration samples and the
selection of wavelengths that provide the best fit for the model is not a trivial
process. Several wavelength selection strategies, such as step-wise wavelength
selection and all possible combination searches, are available to build an ILS
model that fits the data best.

Genetic algorithms (GA) are global search and optimization methods based
on the principles of natural evolution and selection as developed by Darwin.
Computationally, the implementation of a typical GA is quite simple and con-
sists of five basic steps including initialization of a gene population, evalua-
tion of the population, selection of the parent genes for breeding and mating,
crossover and mutation, and replacing parents with their offspring. These steps
have taken their names from the biological foundation of the algorithm.

Genetic inverse least squares (GILS) is an implementation of a GA for
selecting wavelengths to build multivariate calibration models with a reduced
data set. GILS follows the same basic initialize/breed/mutate/evaluate algo-
rithm as other GAs to select a subset of wavelengths but is unique in the way it
encodes genes. A gene is a potential solution to a given problem and the exact
form may vary from application to application. Here, the term gene is used to
describe the collection of instrumental response at the wavelength range given
in the data set. The term “population” is used to describe the collection of
individual genes in the current generation.

In the initialization step, the first generation of genes is created randomly
with a fixed population size. Although random initialization helps to minimize
bias and maximize the number of possible recombinations, GILS is designed to
select initial genes in a somewhat biased random fashion in order to start with
genes better suited to the problem than those that would be randomly selected.
Biasing is done with a correlation coefficient by plotting the predicted results of
initial population against the actual component concentrations. The size of the
gene pool is a user-defined even number in order to allow breeding of each gene
in the population. It is important to note that the larger the population size, the
longer the computation time. The number of instrumental responses in a gene is
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determined randomly between a fixed low limit and high limit. The lower limit
was set to 2 in order to allow single point crossover whereas the higher limit
was set to eliminate overfitting problems and reduce the computation time.
Once the initial gene population is created, the next step is to evaluate and rank
the genes using a fitness function, which is the inverse of the standard error of
calibration (SEC).

The third step is where the basic principle of natural evolution is put to work
for GILS. This step involves the selection of the parent genes from the current
population for breeding using a roulette wheel selection method according to
their fitness values. The goal is to give a higher chance to those genes with high
fitness so that only the best performing members of the population will survive
in the long run and will be able to pass their information to the next generations.
Because of the random nature of the roulette wheel selection method, however,
genes with low fitness values will also have some chance to be selected. Also,
there will be genes that are selected multiple times and some genes will not
be selected at all and will be thrown out of the gene pool. After the selection
procedure is completed, the selected genes are allowed to mate top-down in
pairs whereby the first gene mates with the second gene and the third one with
the fourth one and so on as illustrated in the following example:

Parents

S1 = (A1147, A951, #A2179, A2218) (5)

S2 = (A1225, A1478, #A1343, A950, A1451, A2358, A931, A1158) (6)

The points where the genes are cut for mating are indicated by #.
Offspring

S3 = (A1147, A951, A1343, A950, A1451, A2358, A931, A1158) (7)

S4 = (A2179, A2218, A1225, A1478) (8)

where A1147 represents the instrument response at the wavelength given in
subscript, S1 and S2 represent the first and second parent genes and S3 and
S4 are the corresponding genes for the offspring. Here the first part of S1 is
combined with the second part of the S2 to give the S3; likewise, the second
part of the S1 is combined with the first part of the S2 to give S4. This process
is called the single point crossover and is common in GILS. Single point
crossover will not provide different offspring if both parent genes are identical,
which may happen in roulette wheel selection, when both genes are broken at
the same point. Also note that mating can increase or decrease the number of
instrument responses in the offspring genes. After crossover, the parent genes
are replaced by their offspring and the offspring are evaluated. The ranking
process is based on their fitness values following the evaluation step. Then
the selection for breeding/mating starts all over again. This is repeated until a
predefined number of iterations is reached.
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Mutation that introduces random deviations into the population was also
introduced into the GILS during the mating step at a rate of 1% as is typical
in GAs. This is usually done by replacing one of the responses in an existing
gene with a randomly selected new one. Mutation allows the GILS to explore
the search space and incorporate new material into the genetic population. It
helps keep the search moving and can eject GILS from a local minimum on the
response surface. However, it is important not to set the mutation rate too high
because it may keep the GA from being able to exploit the existing population.
Also, the GILS method is an iterative algorithm and therefore there is a high
possibility that the method may easily over fit the calibration data so that the
predictions for independent sets might be poor. To eliminate possible over-
fitting problems, cross validation is used in which one spectrum is left out of
the calibration set and the model is constructed with m − 1 sample. Then this
model is used to predict the concentration of left out sample. This process is
continued until all samples are left out at least once in each iteration. As long
as the number of spectra in the calibration set is not too large, cross validation
is an effective method of eliminating over fitting. If the number of calibration
spectra is very large, then the GILS method has the option of a half validation
approach in which half of the spectra in the calibration set is used to validate
the model in each iteration.

In the end, the gene with the lowest SEC (highest fitness) is selected
for the model building and this model is used to predict the concentrations of
component being analyzed in the prediction (test) sets. The success of the model
in the prediction of the test sets is evaluated using standard error of prediction
(SEP). Because random processes are heavily involved in GILS as in all the
GAs, the program has been set to run several times for each component in this
study. The best run (i.e., the one generating the lowest SEC for the calibration
set and at the same time producing SEPs for prediction sets that are in the same
range with the SEC) is subsequently selected for evaluation and further analysis.
The termination of the algorithm can be done in many ways. The easiest way is
to set a predefined iteration number for the number of breeding/mating cycles.

GILS has some major advantages over classical univariate and multivariate
calibration methods. First of all, it is quite simple in terms of the mathematics
involved in the model- building and prediction steps, but at the same time it
has the advantages of the multivariate calibration methods with a reduced data
set because it uses the full spectrum to extract genes. By selecting a subset of
instrument responses it is able to eliminate nonlinearities that might be present
in the full spectral region.

Materials

Pinus nigra Arnold. var pallasiana trees used for the study were collected from
the Söǧütdaǧı region, Keçiborlu, Isparta, Turkey. The trees were sampled from
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plots ranged in the same elevation of 1230 m with average precipitation of 51.5
cm and average July maximum temperature of 30.3◦C and average January
temperature of 1.8◦C. Trees aged from 17 to 22 years were used in this study
and diameter ranged from 15 to 25 cm. Tree selection was based on good
form trees and eccentric piths were not used. Samples were taken from the
breast height section to determine chemical contents. A total of 51 trees were
examined. Among these trees, 23 were collected from a thinning applied plot
and 28 were from a control plot. All tree samples were kept in bed for 3 years
and were then planted in the field. Twelve years later thinning was applied.

Methods

Extractive and lignin content of wood were determined according to TAPPI
Standard test method T 204 om-88 and T222 om-88. Wood meal samples were
prepared using a Wiley mill and ground to pass various mesh screens. In order
to determine extractive content, ethanol-benzene solution (1:2 v/v) was used.
Extraction was carried out in soxhlet for 6 hours. In order to determine acid
insoluble lignin content of wood, the carbohydrates in wood were hydrolyzed
and dissolved with sulfuric acid according to the TAPPI Standard test method.
Acid insoluble lignin is filtered off, dried, and the content is measured. All tests
were repeated three times.

Near infrared spectroscopic measurements of the sample described ear-
lier were carried out in diffuse reflectance mode between 1000 and 2500 nm
wavelength interval against gold surface background. Among the 51 samples,
21 were randomly selected and initial wet chemical analyses were performed
on these samples, then the remaining 30 were analyzed as a second party. Al-
though wet chemical analysis of the samples in the first and the second set were
carried out at different times, NIR analysis of the all samples (51 of them) were
analyzed at the same time in a day.

Software

After collection of raw spectra, all data were transferred into a Microsoft Ex-
cel worksheet where text files of calibration sets and independent validation
sets were prepared. Multivariate calibration models were built with the GILS
method for extractive and lignin content for the first 21 samples and the remain-
ing 30 samples separately and also for the combination of both data sets. The
GILS method was implemented in MATLAB programming language Version
7.0 (MathWorks Inc., Natick, MA).

RESULTS AND DISCUSSION

The results of wet chemical analysis for Pinus nigra Arnold. var. Pallasiana
were given in Table 1. Wood is an organic living material and its properties
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Lignin and Extractive Content of Pinus nigra Arnold. var. Pallasiana Tree 33

Figure 1. Near infrared diffuse reflectance spectra of 20 wood samples collected from
Pinus nigra Arnold. var. pallasiana trees.

change from tree to tree depending on growth conditions. This change can
be seen in Table 1 and average lignin content was 22.45 ± 3.68% and ex-
tractive content was 7.77 ± 1.66%. This measurement takes a long time and
consumes a lot of chemicals. NIR spectroscopy has become a popular method
for simultaneous chemical analysis.

Near infrared diffuse reflectance spectra of about 20 wood samples among
51 are shown in Figure 1. It is evident that the samples yield high absorbance
values around 1450, 1900, and 2100 nm wavelength regions. However, because
they are all pine wood samples, their spectral characteristics are very much
alike except for the baseline differences among the samples. This type of
baseline shift in the absorbance scale is quite common in diffuse reflectance
spectroscopy and part of it is due to sample composition differences and part of
it is due to sample inhomogeneities. Because the GILS method used here is a
genetic algorithm based on multivariate calibration techniques, it was expected
that it can select certain combinations of wavelengths that have maximum
correlation with extractive and lignin content of the samples.

In order to construct NIR spectroscopic multivariate calibration models for
extractive and lignin content three different calibration sets were prepared. The
first calibration set was generated from the aforementioned 21 samples. This
data set is called the first data set in which 14 of them were randomly selected
for the calibration set including the samples having minimum and maximum
extractive and lignin contents. The remaining 7 samples were reserved for inde-
pendent test samples. As can be seen from Table 1, the minimum and maximum
extractive and lignin contents were not the same samples, and, therefore dif-
ferent samples were used in both calibration and validation sets for extractive
and lignin content. Reference extractive and lignin contents versus predicted
values based on NIR spectra using the GILS method are shown in Figure 2
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34 B. Uner et al.

Figure 2. Reference versus predicted lignin and extractive contents for the first data
set.

for the first data set. Calibration models for lignin content determination gave
standard error of calibration (SEC) and standard error of prediction (SEP) val-
ues as 0.61% (w/w) and 1.33% (w/w) for calibration and independent test sets,
respectively. In the case of extractive content determination, the SEC and SEP
values were 0.35% (w/w) and 1.36% (w/w) for calibration and prediction sets,
respectively. The R2 value of regression lines for lignin was 0.964 and that for
extractive content was 0.980.

When these SEC and SEP errors are examined, it is seen that the values for
lignin content were comparable even though the SEP value is about twice that of
the SEC. It must be realized that the GILS method is an iterative procedure due
to the genetic algorithm used to select a subset of wavelengths from the whole
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spectral range. As mentioned earlier, NIR spectra of these samples suffer from
somewhat large baseline fluctuations. This causes the GILS to model this effect
while preparing calibration models even though the cross validation approach
is used during the model-building step. Since independent test samples in
the prediction set do not have the same baseline trends as in the calibration
set, predictions result in larger SEP values. Yet, when the overall calibration
performance of the model is examined, it is possible to state that the NIR
spectra do contain quantitative information that is correlated with extractive and
lignin content of the wood samples studied here. It is also worth mentioning
that the results of GILS can only be as good as the results of wet chemical
analysis because the model building is based on the reference values obtained
from it.

Figure 3 shows the reference lignin and extractive contents versus GILS
predicted values for the second data set with 30 samples, of which 20 were
used for model building in the calibration set and the remaining 10 samples
were reserved for the prediction set. While the concentrations of lignin content
were ranging between 14% (w/w) and 27% (w/w) for the first data set, the
upper level of lignin content in the second data set was around 35% (w/w).
On the other hand, the extractive content of the samples in the second data
set were distributed in a narrower range between 5% (w/w) and 11% (w/w)
when compared with the first data set. The SEC values for lignin and extractive
content were 1.02% (w/w) and 0.34% (w/w), respectively, whereas the SEP
values were ranged between 1.46% (w/w) and 0.66% (w/w) for lignin and
extractive content. The R2 value of regression lines for lignin was 0.941 and
that for extractive content was 0.929.

When SEC and SEP values are examined in the second data set, it is seen
that the agreement between these values is better than those obtained for the
first data set. One possible explanation of this improvement could be attributed
to increased number of calibration and prediction samples. On the other hand,
the R2 of calibration lines were now lower than those obtained for the first data
set. This is also an expected outcome of calibration models with larger data
set as variability increases with the larger number of samples in the calibration
set.

The third data set analyzed in this study was formed by combining the first
and the second data sets into a single set as given in Table 1. The calibration
and prediction sets are formed by adding the corresponding spectra in the first
data set to the data in the second data set. The calibration plots for lignin and
extractive content are given in Figure 4.

The wet chemical reference analysis of the first and the second data sets
were carried out at different times and consequently some variations in lignin
and extractive contents of the samples are revealed, as can be seen in Table
1. This variability can also be seen in Figures 2 and 3 for both lignin and
extractive contents. For example, in Figure 2, the dynamic range of lignin
was in the range of 13 to 29% (w/w) whereas this was between 13 and 37%
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36 B. Uner et al.

Figure 3. Reference versus predicted lignin and extractive contents for the second data
set.

(w/w) in Figure 3 for the second data set. A similar but reverse trend about
the extractive content can also be seen between Figures 2 and 3 where a larger
dynamic range was seen in Figure 2. On the other hand NIR analysis of the
samples was performed at the same time in a day and calibration models were
generated by combining both data sets. We suspect that this could be the reason
for the decrease in the predictive ability of the models generated with GILS in
the third data set. It is worth mentioning, however, that this decrease is mostly
due to the reference analysis and due to the NIR-based GILS modeling. Both
SEC and SEP values were somewhat higher in the third data set compared to
the first and second data sets. For the determination of lignin content, SEC
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Figure 4. Reference versus predicted lignin and extractive contents for the third data
set.

and SEP values were 1.77% (w/w) and 2.40% (w/w), respectively. In the case
of extractive content determination similar results were obtained in which
the SEC was 0.75% (w/w) and the SEP was 1.40% (w/w). This increase in
calibration and prediction results are also reflected in R2 values of regression as
the values went down to 0.813 for the lignin content and 0.829 for the extractive
content.

Because the GILS is a wavelength selection–based method, it is interesting
to observe the distribution of selected wavelengths in multiple runs over the
entire full spectral region. Figure 5 illustrates the frequency distribution of se-
lected wavelengths in 100 runs with 20 gene and 50 iteration for the calibration
set that contains 14 samples in the first data set.
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38 B. Uner et al.

Figure 5. Wavelength selection frequency distribution of GILS method for a.) lignin
and b.) extractive content.

As can be seen from the figure there are a number of regions where se-
lection frequencies are very high compared to the rest of the spectrum. The
wavelength region around 1900 nm for lignin content indicates a strong ten-
dency for GILS method to select while for extractive content, around 1500 nm
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is the most frequently selected region. A significant difference between the fre-
quency distribution of lignin content and extractive content is that the selected
wavelengths are more distributed in the former and much more wavelengths
are selected. On the other hand, extractive content determination was achieved
with less number of wavelengths in the final best gene of each iteration.

CONCLUSIONS

The near infrared spectroscopic determination of lignin and extractive content
of Pinus nigra Arnold. Var. pallasiana trees was carried out with both stan-
dard reference methods and near infrared spectroscopy. Spectroscopic mea-
surements were performed on solid milled samples of raw wood in diffuse
reflectance mode of NIR and offer much faster analysis for the screening pur-
pose of these analyses. However, it is important to realize that the performance
of the NIR-based multivariate methods relies on good and reliable reference
analysis results. Results are demonstrated that NIR spectroscopy coupled with
multivariate calibration could be used for routine and fast analysis of these
quality parameters of wood samples.
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